亚洲A∨无码澳门在线_亚洲色偷偷色噜噜狠狠99_国产普通话刺激_女生免费黄视频

動力型鋰離子電池正極材料產(chǎn)業(yè)化論敘

鉅大鋰電  |  點擊量:0  |  2018年12月03日  

狹義的三元材料指的是化學計量比的鎳鈷猛三組份層狀正極材料,這類材料最早是由華裔學者劉兆林于1999年在新加坡A-Star下屬的材料研究與工程研究所(IMRE)工作的時候報道的,之后國際上很多課題組都對這一系列的材料進行了非常細致深入的研究。而廣義意義上的三元材料包含范圍比較寬,鋰含量非化學計量比以及寬組份的多元層狀材料都可以包含在這個范疇之內(nèi)。


一般來說,國際上公認日本大阪城市大學的TsutamuOhzuku(小槻勉)和加拿大Dalhousie大學的J.R.Dahn這兩個課題組對三元材料研究得最深入全面,其研究成果對產(chǎn)業(yè)界的影響也比較廣泛。美國阿貢國家實驗室(ANL)對三元材料也有深入的基礎(chǔ)研究,但其研究成果相對而言對產(chǎn)業(yè)界影響并不大。


早期NMC的研究主要集中在材料的合成工藝、電化學性能、晶體結(jié)構(gòu)變化以及反應(yīng)機理能方面,最近幾年NMC的基礎(chǔ)研究已經(jīng)明顯放緩,人們更多地關(guān)注材料的生產(chǎn)工藝革新、電化學性能優(yōu)化、安全性、復合三元材料以及三元材料在高電壓下的應(yīng)用等方面的問題。


筆者這里要指出的是,由于美國3M公司最早申請了三元材料的相關(guān)專利,而3M是按照鎳猛鈷(NMC)的循序來命名三元材料的,所以國際上普遍稱呼三元材料為NMC。但是國內(nèi)出于發(fā)音的習慣一般稱為鎳鈷猛(NCM),這樣就帶來了三元材料型號的誤解,因為三元材料的名稱比如333、442、532、622、811等都是以NMC的順序來命名的。而BASF則是因為購買了美國阿貢國家實驗室(ANL)的相關(guān)專利,為了顯示自己與3M的“與眾不同”并且拓展中國市場,而故意稱三元材料為NCM。


三元材料(NMC)實際上是綜合了LiCoO2、LiNiO2和LiMnO2三種材料的優(yōu)點,由于Ni、Co和Mn之間存在明顯的協(xié)同效應(yīng),因此NMC的性能好于單一組分層狀正極材料,而被認為是最有應(yīng)用前景的新型正極材料之一。


三種元素對材料電化學性能的影響也不一樣,一般而言,Co能有效穩(wěn)定三元材料的層狀結(jié)構(gòu)并抑制陽離子混排,提高材料的電子導電性和改善循環(huán)性能。但是Co比例的增大導致晶胞參數(shù)a和c減小且c/a增大,導致容量降低。而Mn的存在能降低成本和改善材料的結(jié)構(gòu)穩(wěn)定性和安全性,但是過高的Mn含量將會降低材料克容量,并且容易產(chǎn)生尖晶石相而破壞材料的層狀結(jié)構(gòu)。Ni的存在使晶胞參數(shù)c和a增大且使c/a減小,有助于提高容量。但是Ni含量過高將會與Li+產(chǎn)生混排效應(yīng)而導致循環(huán)性能和倍率性能惡化,而且高鎳材料的pH值過高影響實際使用。


在三元材料中,根據(jù)各元素配比的不同,Ni可以是+2和+3價,Co一般認為是+3價,Mn則是+4價。三種元素在材料中起不同的作用,充電電壓低于4.4V(相對于金屬鋰負極)時,一般認為主要是Ni2+參與電化學反應(yīng)形成Ni4+;繼續(xù)充電在較高電壓下Co3+參與反應(yīng)氧化到Co4+,而Mn則一般認為不參與電化學反應(yīng)。


三元材料根據(jù)組分可以分為兩個基本系列:低鈷的對稱型三元材料LiNixMnxCo1-2xO2和高鎳的三元材料LiNi1-2yMnyCoyO2兩大類型,三元材料的相圖如上圖所示。此外有一些其它組分,比如353、530、532等等。對稱型三元材料的Ni/Mn兩種金屬元素的摩爾比固定為1,以維持三元過渡金屬氧化物的價態(tài)平衡,代表性的產(chǎn)品是333和442系列三元材料,這個組分系列在美國3M專利保護范圍內(nèi)。這類材料由于Ni含量較低Mn含量較高晶體結(jié)構(gòu)比較完整,因此具有向高壓發(fā)展的潛力,筆者在“消費電子類鋰離子電池正極材料產(chǎn)業(yè)化發(fā)展探討”一文里已經(jīng)進行了比較詳細的討論。


從高鎳三元NMC的化學式可以看出,為了平衡化合價,高鎳三元里面Ni同時具有+2和+3價,而且鎳含量越高+3價Ni越多,因此高鎳三元的晶體結(jié)構(gòu)沒有對稱型三元材料穩(wěn)定。在這兩大系列之外的其它一些組分,一般都是為了規(guī)避3M或者ANL、Umicore、Nichia的專利而開發(fā)出來的。比如532組分原本是SONY和松下為了規(guī)避3M的專利的權(quán)宜之計,結(jié)果現(xiàn)在NMC532反倒成了全球最暢銷的三元材料。


三元材料具有較高的比容量,因此單體電芯的能量密度相對于LFP和LMO電池而言有較大的提升。近幾年,三元材料動力電池的研究和產(chǎn)業(yè)化在日韓已經(jīng)取得了較大的進展,業(yè)內(nèi)普遍認為NMC動力電池將會成為未來電動汽車的主流選擇。一般而言,基于安全性和循環(huán)性的考慮,三元動力電池主要采用333、442和532這幾個Ni含量相對較低的系列,但是由于PHEV/EV對能量密度的要求越來越高,622在日韓也越來越受到重視。


三元材料的核心專利主要掌握在美國3M公司手里,阿貢國家實驗室(ANL)也申請了一些三元材料(有些包含于富鋰錳基層狀固溶體)方面的專利,但業(yè)界普遍認為其實際意義并不及3M。


國際上三元材料產(chǎn)量最大的是比利時Umicore,并且Umicore和3M形成了產(chǎn)研聯(lián)盟。此外,韓國L&F,日本Nichia(日亞化學),TodaKogyo(戶田工業(yè))也是國際上主要的三元材料生產(chǎn)廠家,而德國BASF則是新加入的三元新貴。值得一提的是,國際上四大電芯廠家(SONY、Panasonic、SamsungSDI和LG)在三元材料和鈷酸鋰正極材料方面,都有相當比例的inhouse產(chǎn)能,這也是這四家大廠相對于全球其它電芯廠家技術(shù)大幅領(lǐng)先的一個重要體現(xiàn)。


3.1三元材料的主要問題與改性手段


目前NMC應(yīng)用于動力電池存在的主要問題包括:(1)由于陽離子混排效應(yīng)以及材料表面微結(jié)構(gòu)在首次充電過程中的變化,造成NMC的首次充放電效率不高,首效一般都小于90%;(2)三元材料電芯產(chǎn)氣較嚴重安全性比較突出,高溫存儲和循環(huán)性還有待提高;(3)鋰離子擴散系數(shù)和電子電導率低,使得材料的倍率性能不是很理想;(4)三元材料是一次顆粒團聚而成的二次球形顆粒,由于二次顆粒在較高壓實下會破碎,從而限制了三元材料電極的壓實,這也就限制了電芯能量密度的進一步提升。


針對以上這些問題,目前工業(yè)界廣泛采用的改性措施包括:


雜原子摻雜。為了提高材料所需要的相關(guān)方面的性能(如熱穩(wěn)定性、循環(huán)性能或倍率性能等),通常對正極材料進行摻雜改性研究。但是,摻雜改性往往只能改進某一方面或部分的電化學性能,而且常常會伴隨著材料其它某一方面性能(比如容量等)的下降。


NMC根據(jù)摻雜元素的不同可以分為:陽離子摻雜、陰離子摻雜以及復合摻雜。很多陽離子摻雜被研究過,但有實際效果的僅限于Mg、Al、Ti、Zr、Cr、Y、Zn這幾種。一般而言,對NMC進行適當?shù)年栯x子摻雜,可以抑制Li/Ni的陽離子混排,有助于減少首次不可逆容量。陽離子摻雜可以使層狀結(jié)構(gòu)更完整,從而有助于提高NMC的倍率性,還可以提高晶體結(jié)構(gòu)的穩(wěn)定性,這對改善材料的循環(huán)性能和熱穩(wěn)定性的效果是比較明顯的。


陰離子摻雜主要是摻雜與氧原子半徑相近的F原子。適量地摻雜F可以促進材料的燒結(jié),使正極材料的結(jié)構(gòu)更加穩(wěn)定。F摻雜還能夠在循環(huán)過程中穩(wěn)定活性物質(zhì)和電解液之間的界面,提高正極材料的循環(huán)性能?;旌蠐诫s一般是F和一種或者數(shù)種陽離子同時對NMC進行摻雜,應(yīng)用比較廣泛的是Mg-F、Al-F、Ti-F、Mg-Al-F、Mg-Ti-F這么幾種組合?;旌蠐诫s對NMC的循環(huán)和倍率性能改善比較明顯,材料的熱穩(wěn)定性也有一定提高,是目前國際主流正極廠家采用的主要改性方法。


NMC摻雜改性關(guān)鍵在于摻雜什么元素,如何摻雜,以及摻雜量的多少的問題,這就要求廠家具有一定的研發(fā)實力。NMC的雜原子摻雜既可以在前驅(qū)體共沉淀階段進行濕法摻雜,也可以在燒結(jié)階段進行干法摻雜,只要工藝得當都可以收到不錯的效果。廠家需要根據(jù)自己的技術(shù)積累和經(jīng)濟狀況來選擇適當?shù)募夹g(shù)路線,所謂條條大道通羅馬,適合自家的路線就是最好的技術(shù)。


表面包覆。NMC表面包覆物可以分為氧化物和非氧化物兩種。最常見的氧化物包括MgO、Al2O3、ZrO2和TiO2這幾種,常見的非氧化物主要有AlPO4、AlF3、LiAlO2、LiTiO2等。無機物表面包覆主要是使材料與電解液機械分開從而減少材料與電解液副反應(yīng),抑制金屬離子的溶解,優(yōu)化材料的循環(huán)性能。同時,無機物包覆還可以減少材料在反復充放電過程中材料結(jié)構(gòu)的坍塌,對材料的循環(huán)性能是有益的。NMC的表面包覆對降低高鎳三元材料表面殘堿含量是比較有效的,這個問題筆者后面還會談到。


同樣,表面包覆的難點首先在于選擇什么樣的包覆物,再就是采用什么樣的包覆方法以及包覆量的多少的問題。包覆既可以用干法包覆,也可以在前驅(qū)體階段進行濕法包覆的,這都需要廠家需要根據(jù)自身情況選擇合適的工藝路線。


生產(chǎn)工藝的優(yōu)化。改進生產(chǎn)工藝主要是為了提高NMC產(chǎn)品品質(zhì),比如降低表面殘堿含量、改善晶體結(jié)構(gòu)完整性、減少材料中細粉的含量等,這些因素都對材料的電化學性能有較大影響。比如適當調(diào)整Li/M比例,可以改善NMC的倍率性能,增加材料的熱穩(wěn)定性,這就需要廠家對三元材料的晶體結(jié)構(gòu)有相當?shù)睦斫狻?/p>


3.2三元材料的前驅(qū)體生產(chǎn)


NMC跟其它幾種正極材料的生產(chǎn)過程相比,有個很大的不同之處就是其獨特的前驅(qū)體共沉淀生產(chǎn)工藝。雖然在LCO、LMO和LFP的生產(chǎn)當中,采用液相法生產(chǎn)前驅(qū)體越來越普遍,而且在高端材料生產(chǎn)中更是如此,但對于大多數(shù)中小企業(yè)而言固相法仍然是這幾種材料的主流工藝。然而三元材料(也包括NCA和OLO),則必須采用液相法才能保證元素在原子水平的均勻混合,這是固相法無法做到的。正是有了這個獨特的共沉淀工藝,使得NMC的改性相對其它幾種正極材料而言更加容易,而且效果也很明顯。


目前國際主流的NMC前驅(qū)體生產(chǎn)采用的是氫氧化物共沉淀工藝,NaOH作為沉淀劑而氨水是絡(luò)合劑,生產(chǎn)出高密度球形氫氧化物前驅(qū)體。該工藝的優(yōu)點是可以比較容易地控制前驅(qū)體的粒徑、比表面積、形貌和振實密度,實際生產(chǎn)中反應(yīng)釜操作也比較容易。但也存在著廢水(含NH3和硫酸鈉)處理的問題,這無疑增加了整體生產(chǎn)成本。碳酸鹽共沉淀工藝從成本控制的角度而言具有一定優(yōu)勢,即使不使用絡(luò)合劑該工藝也可以生產(chǎn)出球形度很好的顆粒。碳酸鹽工藝目前最主要的問題是工藝穩(wěn)定性較差,產(chǎn)物粒徑不容易控制。碳酸鹽前驅(qū)體雜質(zhì)(Na和S)含量相對氫氧化物前驅(qū)體較高而影響三元材料的電化學性能,并且碳酸鹽前驅(qū)體振實密度比氫氧化物前驅(qū)體要低,這就限制了NMC能量密度的發(fā)揮。


筆者個人認為,從成本控制以及高比表面積三元材料在動力電池中的實際應(yīng)用角度來考慮,碳酸鹽工藝可以作為主流氫氧化物共沉淀工藝的主要補充,需要引起國內(nèi)廠家的足夠重視。


目前國內(nèi)正極材料廠家普遍忽視三元材料前驅(qū)體的生產(chǎn)和研發(fā),大部分廠家直接外購前驅(qū)體進行燒結(jié)。筆者這里要強調(diào)的是,前驅(qū)體對三元材料的生產(chǎn)至關(guān)重要,因為前驅(qū)體的品質(zhì)(形貌、粒徑、粒徑分布、比表面積、雜質(zhì)含量、振實密度等)直接決定了最后燒結(jié)產(chǎn)物的理化指標。可以這么說,三元材料60%的技術(shù)含量在前驅(qū)體工藝里面,而相對而言燒結(jié)工藝基本已經(jīng)透明了。所以,無論是從成本還是產(chǎn)品品質(zhì)控制角度而言,三元廠家必須自產(chǎn)前驅(qū)體。事實上,國際上三元材料主流廠商,包括Umicore、Nichia、L&F、TodaKogyo無一例外的都是自產(chǎn)前驅(qū)體,只有在自身產(chǎn)能不足的情況下才適當外購。所以,國內(nèi)正極廠家必須對前驅(qū)體的研發(fā)和生產(chǎn)引起高度重視。

相關(guān)產(chǎn)品