鉅大LARGE | 點擊量:3408次 | 2020年11月20日
磷酸鐵鋰離子電池高溫存儲性能衰減原因分析
一、實驗過程
實驗使用CATL生產(chǎn)的標稱容量為86Ah的方形磷酸鐵鋰離子電池。該電池以LiFePO4為正極材料,石墨為負極材料,使用聚乙烯隔膜和LiPF6電解液。選取同一批次、電性能接近的20個電池進行存儲,測試電池的電性能。
100%SOC電池60℃存儲一按時間后,在2.50~3.65V之間以0.5C倍率進行一次放電-充電循環(huán)。然后將滿充電池繼續(xù)在60℃存儲。如此反復(fù),記錄電池的容量衰減過程。在每次容量測試過程中,測試電池5C/30s的直流內(nèi)阻(DCR)。
取經(jīng)過不同存儲時間且處于完全放電狀態(tài)的電池,在充滿Ar氣的手套箱中進行拆解。使用場發(fā)射掃描電子顯微鏡觀察極片形貌,使用比表面分析儀測試極片比表面積。在手套箱中用透明膠帶將電極片密封,使用X射線衍射儀分析電極材料物相組成。
以滿充電池拆解后的極片為工作電極,鋰片為對電極,裝配成CR2032扣式電池,考察陰陽極片的電化學(xué)性能。用電化學(xué)工作站測試扣式電池的電化學(xué)阻抗譜。使用電感耦合等離子體發(fā)射光譜儀分析電極片的元素含量。
二、結(jié)果討論
1.電池性能分析
以0.02C小倍率對電池進行充放電,中電池電壓曲線中包含鋰離子嵌入脫出石墨導(dǎo)致的多個平臺,說明0.02C倍率已經(jīng)為鋰離子嵌入脫出過程中石墨結(jié)構(gòu)的弛豫供應(yīng)了足夠的時間,可以有效消除極化對循環(huán)造成的影響。
與0.5倍率相比,將充放電倍率降低到0.02C只能使存儲181和575d電池的容量保持率新增0.8%和1.4%。因此,長期高溫存儲導(dǎo)致的電池容量衰減是不可逆的容量衰減。此外,顯示,電池的直流內(nèi)阻隨存儲時間延長而增大的幅度并不顯著,這也說明電池內(nèi)部極化不是導(dǎo)致日歷存儲電池容量不可逆衰減的重要原因。
2.電池容量衰減機理分析
為了分析電池容量衰減根源,將經(jīng)過高溫存儲的電池以1C倍率充電至100%SOC或者放電至100%DOD后拆解。分析拆解出來的極片,以考察高溫存儲對陰陽極活性材料結(jié)構(gòu)、元素組成和電化學(xué)性能的影響。
物相分析
經(jīng)過不同高溫存儲時間電池陰極片在100%DOD時的XRD圖。與LiFePO4及FePO4的XRD標準譜比較,極片所有衍射峰都對應(yīng),未檢測到雜相。
高溫存儲后電極片的電化學(xué)性能
將不同存儲時間的電池在100%SOC拆解,以其中的極片作為工作電極、鋰片作為對電極制作扣式電池,以0.1C倍率進行充放電測試。
不同存儲時間電池的陰極活性物質(zhì)首次放電比容量均高于155mAh/g,與未經(jīng)存儲電池的陰極活性物質(zhì)的比容量接近,說明存儲對LiFePO4結(jié)構(gòu)沒有明顯破壞。圖3(c)中扣式電池的恒壓充電的比容量稍有新增,但充電總比容量仍與未經(jīng)存儲電池的陰極活性物質(zhì)的比容量接近。說明經(jīng)過575d存儲后電池陰極的極化增大,但陰極材料的儲鋰能力并未受到影響,可能與存儲過程中電解液分解產(chǎn)物沉積有關(guān)。
經(jīng)過181和575d存儲的電池陽極組裝的扣式電池可逆比容量分別為335.6和327.1mAh/g,分別比未經(jīng)存儲的電池陽極組裝的扣式電池可逆比容量小0.8%和3.0%,說明高溫存儲對石墨儲鋰能力影響也非常小。出于電池安全角度考慮,全電池中陽極總?cè)萘客ǔ3^陰極總?cè)萘康?0%以上,故高溫存儲造成的陽極不可逆容量衰減不會對全電池容量造成影響。
存儲181和575d電池陽極首次充電比容量分別為未經(jīng)存儲電池陽極首次充電比容量的90.4%和84.5%,與實際電池的容量保持率接近。所以,電池容量衰減的重要原因是全電池中活性鋰離子的損失。
綜上所述,高溫存儲不會明顯影響LiFePO4和石墨電極的脫嵌鋰能力。100%DOD高溫存儲電池的陰極存在貧鋰相、陽極能夠接收的鋰離子數(shù)量變少的原因不是活性電極材料的嵌脫鋰能力發(fā)生了顯著變化,而是由于電池中可供嵌入/脫出的鋰離子數(shù)量變少所致。電池中活性鋰離子被高溫存儲過程中發(fā)生的電極/電解液界面副反應(yīng)所消耗,分析活性鋰離子損失根源有助于加深對存儲容量損失機理的認識。
極片物性分析
新鮮電池陰極中的LiFePO4顆粒呈類球形,粒徑在200nm左右;經(jīng)過181d存儲后,LiFePO4顆粒間的空隙大小沒有明顯變化;經(jīng)過575d存儲后,顆粒間的空隙明顯減少。在石墨陽極,隨著存儲時間新增,副反應(yīng)產(chǎn)物的量也在變多[圖4(d),(e),(f)]。高溫存儲過程中的副反應(yīng)產(chǎn)物沉積在極片中,改變了極片的形貌。為了表征副反應(yīng)對前述活性鋰離子損失的影響,進一步分析了陰陽極片中的Li含量,以研究活性鋰離子損失的根源。
由于100%SOC電池陰極片含鋰量非常低,故損失的活性鋰離子重要沉積于陽極。在100%SOC高溫存儲中,陽極長期處于嵌鋰、電位非常低的狀態(tài),電解液很容易在其表面發(fā)生還原反應(yīng),消耗鋰離子,生成含鋰的副反應(yīng)產(chǎn)物。為了確定陽極表面可溶性鋰的組成,對100%DOD電池的拆解陽極進行電位滴定,結(jié)果見表2。
陽極表面以碳酸鹽形態(tài)存在的Li元素隨著存儲時間延長而新增(見表2),表明電池存儲過程中生成了大量無機鋰鹽組分。無機鹽是溶劑還原反應(yīng)的重要產(chǎn)物,是電池存儲過程中電解液大量分解所致。
電極反應(yīng)動力學(xué)
電化學(xué)阻抗譜(見圖5)中,雖然陰極Rct隨高溫存儲時間延長而增大[圖5(a)],但陰極Rct較小,對電池內(nèi)阻影響也較小。陽極EIS[圖5(b)]RSEI隨存儲時間變化不明顯,但Rct隨存儲時間延長而顯著新增。由于高溫存儲過程中電解液副反應(yīng)產(chǎn)物沉積于石墨表面,陽極比表面積隨存儲時間新增而減小,存儲0、181和575d電池陽極比表面積分別為3.42、2.97和1.84cm2/g。陽極比表面積下降使發(fā)生在陽極表面的電化學(xué)反應(yīng)活性減小,導(dǎo)致陽極/電解液表面的電荷轉(zhuǎn)移電阻Rct增大。
綜上所述,在高溫存儲過程中,嵌鋰態(tài)陽極長期處于低電位狀態(tài),電解液還原反應(yīng)消耗活性鋰離子,最終生成無機鋰鹽;高溫新增了電解液還原反應(yīng)速率,使活性鋰離子大量損失(圖6)。此外,陽極副反應(yīng)產(chǎn)物沉積、SEI膜增厚,造成電極動力學(xué)性能變差。
3.電池高溫存儲性能改進
因為電池高溫存儲過程中的容量損失重要來自陽極表面的副反應(yīng)造成的活性鋰離子損失,所以在電解液中添加SEI膜熱穩(wěn)定添加劑(ASR)可以提升SEI膜的高溫穩(wěn)定性,降低陽極表面的副反應(yīng)活性,減少活性鋰離子損耗。
基礎(chǔ)電解液中添加1%ASR可以有效提升電池的高溫存儲壽命。添加1%ASR后,575d容量保持率從85.8%提升至87.5%[圖7(a)]。DCR上升速率較基礎(chǔ)電解液明顯下降,陽極可溶性含鋰化合物含量也有所減少(表3)。
加入ASR前,陽極90℃開始發(fā)生放熱反應(yīng),為陽極表面SEI膜分解;加入ASR后,分解溫度提高至101℃。加入ASR后SEI膜熱穩(wěn)定性明顯提升,可有效減少活性鋰離子損耗,改善電池存儲壽命。
下一篇:聚合物鋰離子電池的分類和特點介紹